Top Ad unit 728 × 90

Unite d'interface Bus d'un ordinateur

Bus informatique

Un bus informatique est un dispositif de transmission de données partagé entre plusieurs composants d'un système numérique. Le terme dérive du latin omnibus (à tous) ; c'est le sens, d'un usage plus ancien, du terme bus en électronique. Le bus informatique est la réunion des parties matérielle et immatérielle qui permettent la transmission de données entre les composants participants.

On distingue généralement un bus d'une part d'une liaison point à point, qui ne concerne que deux composants qui en ont l'usage exclusif, et d'autre part d'un réseau, qui implique des participants indépendants entre eux, c'est-à-dire pouvant fonctionner de manière autonome, et qui comprend plusieurs canaux permettant des communications simultanées.

Définition et mise en œuvre

Définition fonctionnelle

Un bus est un système de transfert de données entre plusieurs unités fonctionnelles de traitement de donnéesb par l'intermédiaire d'une voie de transmission commune, dans lequel les composants ne prennent aucune part à la transmission des données entre les autres participants3.
Vue des trois sous-ensembles composant un bus : données, adresse et contrôle
Décomposition fonctionnelle d'un bus
Cette définition implique que les données doivent s'accompagner d'une identification du composant auquel elles sont destinées, qu'on appelle par métaphore l’adresse de destination4, et d'une commande indiquant si ce composant doit recevoir les données ou les transmettre. On peut ainsi décomposer le bus en trois sous-ensembles :
  • les données, soit le message proprement dit,
  • l’adresse, qui identifie le destinataire,
  • le contrôle, un ensemble de signaux complémentaires identifiant le type d'action : lecture ou écriture, taille du message, etcc.
Ces trois groupes sont communément appelés bus (bus d'adresse, bus de données, bus de contrôle). Ils peuvent bien être des bus au sens électronique du terme ou être réalisés d'une autre manière ; un bus informatique les combine en un seul dispositif pour transférer des données entre plusieurs composants.
Le débit binaire maximal, exprimé en bits par seconde, décrit la capacité du bus informatique à transférer plus ou moins rapidement des informations.
Lorsque deux composants seulement sont impliqués, le problème de l'adresse ne se pose pas. On parle plutôt de liaison point à point5,6. Un système de transfert de donnée prévu pour plusieurs composants peut effectuer le transfert, mais le traitement inutile de l'information d'adresse pèse sur sa performance.
Lorsque le dispositif de communication comprend plus d'une voie de transmission, permettant plusieurs communications simultanées, la notion de réseau informatique est plus appropriée7.
Les trois approches, liaison de point à point, bus informatique, réseau informatique, partagent la même fonction de communication, avec une complexité croissante. Elles correspondent à des optimisations particulières à chacun de leurs domaines.

Caractérisation

Un bus informatique est constitué à la fois du matériel sur lequel repose la communication, y compris les circuits d'interface, et du protocole qui régit les échanges. Les caractéristiques du matériel conditionnent en partie le type de communication et le protocole peut parfois imposer le type de matériel.
Les bus informatiques peuvent se construire avec plusieurs variantes.
Capacité à contrôler le bus 
La désignation des composants concernés et du sens des transferts est souvent le privilège d'un des composants, que l'on désigne sous le nom de maître8. Dans le cas où plusieurs composants peuvent contrôler le bus (bus multi-maîtres), celui-ci doit inclure un arbitrage entre les requêtes9. Un composant désigné sous le nom d'arbitre est alors en charge de désigner quel composant est autorisé à prendre le contrôle du bus. Différents algorithmes peuvent être utilisés pour faire ce choix : round-robin, dans lequel le choix du composant est périodique, ou encore en fonction d'une priorité définie par le composant effectuant la requête.
Requêtes 
Le protocole le plus simple inclut uniquement les requêtes de lecture et d'écriture. Le composant qu'indique l'adresse doit soit copier les données que présente le bus, soit communiquer ses données. Certains bus incluent des fonctions de contrôle qui permettent des transferts plus rapides.
  • L'instruction de transfert de bloc (en) ou le burst (en) permettent de demander une transmission non plus d'un seul mot de données, mais de plusieurs successivement de ou vers un bloc d'adresses consécutives, de façon à transférer des blocs de données avec une seule requête. Les signaux de contrôle définissent la taille du bloc. Le transfert de bloc peut doubler le débit numérique du bus10.
  • La fonction read-modify-write (en) permet d'accéder à une donnée, et de bloquer le bus le temps de venir la modifier. Cette fonction est particulièrement utile lors de l'utilisation de données partagées. Si plusieurs composants utilisent les donnée enregistrées dans les mêmes composants, des conflits d'usage des données peuvent survenir : le composant A lit la donnée à l'adresse a, et commence à effectuer des calculs avec la valeur trouvée. Pendant ce temps, le composant B fait de même. La composant A reprend le contrôle du bus pour venir modifier la donnée de l'adresse a, puis le composant B fait de même. La valeur de sortie du calcul de A est donc perdue. Bloquer le bus pendant le calcul permet de s'assurer que B ne viendra lire la donnée qu'une fois qu'elle a été mise à jour par A, et d'éviter la mise à jour perdue.
Mode de transmission 
Un bus parallèle transmet simultanément chaque bit constituant le message sur un canal particulier, tandis qu'un bus série les transmet les uns après les autres sur le même canald.
Synchronisation 
La transmission peut être synchrone, avec un signal d'horloge, ou asynchrone, quand chaque transmission comporte une information de synchronisation. Si la transmission est synchrone, il faut que les différences de temps de transmission dues à la distance entre composants ne dépassent pas la limite permise par le signal d'horlogee.
Topologie 
Dans une topologie linéaire, le bus ressemble à une ligne électrique où sont accrochées, de loin en loin, des lampes ; dans une configuration arborescente, d'un tronc commun sortent des branches et des rameaux en direction des composants. Dans une configuration en anneau deux voies existent d'un composant à un autre. Dans les réseaux complexes, structurés comme des réseaux de télécommunication, les circuits de gestion du bus déterminent le chemin de transmission adéquat, parmi un certain nombre de voies disponibles.
Un bus logiciel est un logiciel d'interface qui permet à un poste d'accéder à des données d'autres composants aussi simplement que s'ils lui étaient reliés par un bus. Ce logiciel décharge les programmes de la sélection des voies et des protocoles de communication. Du point de vue du programme appelant, il n'y a qu'un bus. Du point de vue de l'analyse des systèmes, l'ensemble des voies de communication plus les bus logiciels qui assurent l'interface forme le bus informatique.

Topologies

L'implémentation d'un bus peut suivre différentes topologies11 selon l'usage qui en est fait et la stratégie d'optimisation : performance, quantité de ressources utilisées, consommation, etc. La topologie influe sur ces facteurs sans affecter les composants connectés. Ceux-ci utilisent en général un protocole générique, et des adaptateurs entre le composant et les ressources de communication permettent la traduction des requêtes en transferts effectifs. Ainsi certaines définitions de bus, comme l'AXI, ne donnent aucune contrainte sur la topologie. Elles indiquent seulement le protocole que les composants doivent utiliser pour accéder au bus, laissant l'implémentation des lignes de communication à la discrétion de l'architecte.
  • La topologie historique, dite bus, consiste en un médium de communication partagé par tous les composants. Une seule communication peut donc avoir lieu à la fois, ou éventuellement deux simultanément si la lecture et l'écriture utilisent des médium distincts. Dans le cas d'un bus multi-maître, l'arbitre du bus détermine qui est autorisé à utiliser le bus à chaque instant. Cette topologie présente l'avantage d'utiliser le minimum de ressources, mais peut devenir un goulot d'étranglement en cas de requêtes simultanées.
  • La topologie crossbar (en) permet de mettre en œuvre autant de lignes de communications que nécessaire. Une ligne de communication est en général établie entre un maître et un esclave, et ne permet la communication qu'entre ces deux composants. Le choix des lignes à établir est réalisé lors de la phase d'implémentation. Ainsi, si un bus est composé de deux maîtres et de plusieurs esclaves, il est possible que l'un des maîtres n'ait jamais à interagir avec certains esclaves. Dans ce cas, il sera inutile de déployer des ressources de communication entre le maître et les esclaves en question. Cette topologie a le grand avantage de permettre à différents maîtres de communiquer simultanément avec des esclaves différents, augmentant les performances. Elle utilise en revanche beaucoup plus de ressources qu'une topologie bus. Si cette topologie se résume, du point de vue implémentation, à un ensemble de lignes point à point, il s'agit néanmoins bien d'un bus car du point de vue des composants, les communications sont effectuées par adresse.
  • La topologie Network on Chip s'inspire des réseaux en introduisant de multiples lignes de communication reliées entre elles par des routeurs. Le choix du chemin est réalisé dynamiquement en fonction de l'utilisation des lignes. Cette topologie est adaptée aux SoC comportant de nombreux composants, tels les many-cores (architectures multi-cœur dont le nombre de cœurs est très élevé), et permet plusieurs communications simultanées utilisant différentes liaisons.

Matériel

Photographie de cartes de bus VME
Cartes de bus VME
Dans l'architecture d'un système informatique, les bus transmettent les données entre composants. Les caractéristiques de ces composants déterminent celles du bus. Il est très différent de transmettre des bytes des millions de fois par seconde entre des millions ou milliards de composants très proches les uns des autres, comme c'est le cas entre le microprocesseur et la mémoire d'un ordinateur personnel, des paquets de milliers de bytes en quelques millièmes de seconde entre quelques dizaines de composants éloignés de quelques mètres, comme c'est le cas dans un bus USB, et des codes de quelques dizaines de bits quelques dizaines de fois par seconde, entre des composants dispersés sur un site industriel, comme dans un bus de terrain.
Un bus peut utiliser différents supports pour la communication : fils ou nappes pour relier des périphériques à la carte mère d'un ordinateur (par exemple les bus SCSI ou USB), circuits imprimés sur une même carte ou sur un fond de panier (par exemple dans le cas d'un bus PCI Express), routage logique dans un FPGA (par exemple un bus AXI), fibre optique12etc.
Les circuits d'interface, comprenant la conversion parallèle-série et vice-versa, la mémoire tampon et les gestionnaires de communication, ainsi que les répartiteurs et nœuds de communication comme les hubs USB font partie du bus informatique.
La construction matérielle du bus peut répercuter la représentation logique en trois sous-systèmes physiques, avec des faisceaux de conducteurs distincts pour transmettre les signaux d'adresse, de données et de contrôle, associés à un arbre d'horloge pour la synchronisation. Un bus peut aussi transmettre ces différents signaux l'un après l'autre à travers un seul canal d'une ou plusieurs paires de conducteurs comme c'est cas de l'USB.
Quand le dispositif est un bus au sens électronique du terme, c'est-à-dire que tous les composants participants sont reliés aux mêmes conducteurs électriques, pour permettre à un composant, que les lignes ou commandes d'adresse et de contrôle désignent parmi plusieurs, de fixer l'état des lignes de données avec des transitions rapides, aussi bien montantes que descendantes, les composants participants utilisent des sorties soit à 3 états, soit à collecteur ouvertf,13. La fréquence maximale de la communication limite la longueur de ce type de bus. Quand la longueur du conducteur dépasse le quart d'onde de la fréquence maximale dans le conducteur, les phénomènes de réflexions sur les ruptures d'impédance mènent à préférer des lignes de transmission avec répétiteur à chaque node (comme dans l'USB).
Les voies de communication électroniques peuvent être asymétriques, avec le retour du courant par la masse, ou symétriques, avec deux conducteurs d'égale impédance par rapport à la masse. La différence de potentiel, positive ou négative, entre les deux conducteurs constitue le signal. Les canaux symétriques, particulièrement sur paire torsadées, sont moins sensibles aux perturbations, qui agissent à peu près également sur les deux conducteurs, et n'influent pas leur différence.
En général, les systèmes distinguent deux signaux correspondant l'un à 1 et l'autre à 0. Ces signaux peuvent être, dans un bref intervalle de temps déterminé par le signal d'horloge, des niveaux électriques, des transitions entre niveauxg ou bien une transition ou un maintienh. L’élément de signal14 de la transmission est un bit. Néanmoins, des systèmes peuvent transmettre en distinguant plus de niveaux15. Dans ce cas, chaque élément numérique à n niveaux contient \textstyle \frac{\log n}{\log 2} bits16. Lorsqu'on doit tirer le meilleur parti de lignes de qualité médiocre, on utilise des modulateurs-démodulateurs (modems). Le débit peut alors également s'exprimer en bauds, c'est-à-dire en nombre de signaux échangés par seconde.

Bus parallèle

Un bus parallèle transmet simultanément les éléments numériques d'un signal numérique sur un nombre approprié de trajets parallèles entre les composants participants17.

Matériel

D'un point de vue matériel, ce type de bus se décompose en trois sous-ensembles :
  • les lignes de données transmettent les données. À chaque cycle de temps, chaque conducteur transmet un élément numérique. La taille du bus en bits est le nombre de conducteurs de ce sous-ensemble, c'est-à-dire le nombre d'informations (ou bits) que Le bus peut transmettre en un seul cycle. Les tailles en bits les plus courantes sont : 8, 16, 32 ou 64 cependant certaines cartes graphiques peuvent avoir des bus de jusqu'à 1 024 bits18.
  • les lignes d'adresse indiquent quel composant doit émettre ou recevoir l'information présente sur les bus de données. Le nombre de conducteurs d'adresse déterminent l'espace adressable du bus. Un bus à n conducteurs d'adresse a un espace adressable de 2n, correspondant au nombre de combinaisons possibles d'états des conducteurs. À chacune de ces combinaisons peut correspondre un composant.
  • la ou les lignes de contrôle indiquent quelle est l'opération à effectuer. Lorsque le transfert se fait toujours de ou vers le même composant, il suffit d'une ligne qui indique lecture ou écriture.

Fonctionnement

Le bus sert à transmettre un code binaire d'un nombre de bits égal à la taille du bus. Par exemple pour un bus quatre bits on peut transmettre 16 codes différents (24 = 16).
L'émetteur positionne au même instant tous les bits du bus. Au moment adéquat le composant lecteur copiera tous les bits simultanément. Cet instant adéquat peut être déterminé par un des signaux de contrôle qui changera de valeur pour signaler au dispositif lecteur qu'il est temps de lire les données sur le bus.

Cas d'utilisation

  • Lecture et écriture de la mémoire vive par un processeur. Ces bus sont structurés autour de bus au sens de l'électronique, avec leur limitation de longueur. Plus le transfert est rapide, plus ils doivent être courts. Quand l'application exige qu'ils soient être plus longs, comme dans le Small Computer System Interface, la cadence de transmission doit être diminuée.
  • Interconnexion de disques durs SCSI. Une nappe à 68 conducteurs relie chaque disque à l'adaptateur et transporte tour à tour les signaux de commandes et de données sur 16 bits. Ce type de bus est très rapide quand la nappe est de haute qualité, il peut atteindre 320 Mo/s.
  • Connecteurs PCI des cartes d'extension d'un ordinateur personnel, ils permettent des transferts jusqu'à 2 133 Mo/s.

Bus série

Article connexe : Communication série.
Un bus série transmet les éléments numériques d'un signal numérique successivement par un seul trajet entre deux points19.

Matériel

Un bus série peut comporter deux lignes distinctes permettant à ces bus d'être bidirectionnels et de permettre la transmission d'information dans les deux directions simultanément, plus des lignes auxiliaires pour d'éventuels signaux de contrôle.

Fonctionnement

Le bus série transmettant les données élément par élément, l'émetteur doit sérialiser l'information pour sa transmission. Le récepteur devra effectuer l'opération inverse.
Transmission d'un mot par liaison série  :
Le composant émetteur doit transmettre un mot de 32 bits. Le protocole du bus précise dans quel ordre il doit les placer, soit en commençant par le bit le plus significatif (MSB), soit par l'autre bout (LSB). Il transforme ainsi le mot en une séquence sur 32 cycles de synchronisation du bus. Le composant récepteur reconstruit le mot de de 32 bits à partir des bits reçus.
Le câble de bus série comporte beaucoup moins de conducteurs qu'un bus parallèle, ce qui simplifie le câblage et entrave moins la circulation de l'air dans les appareils informatiques grâce à la réduction de la taille du câble, et à sa souplesse. Un bus série emploie nécessairement des composants électroniques pour la sérialisation.
Certains bus série, tel que le FireWire, utilisent un multiplexage temporel pour transmettre les différentes informations (adresse, contrôle et données). On peut aussi les caractériser comme jonction multiplex20.

Cas d'utilisation

Dans un ordinateur

Vue schématique représentant la relation entre les composants d'un ordinateur via un bus
Schéma fonctionnel de bus informatique
Les bus situés à l'intérieur d'un même ordinateur relient ses différentes parties fonctionnelles.
Le débit binaire d'un bus est le produit de la fréquence maximale à laquelle un transfert peut avoir lieu par le nombre de bits d'information qu'il peut transmettre simultanément.
Exemple  :
Un bus parallèle de 32 bits dont le signal a une fréquence de 33 1/3 mégahertz pourrait transmettre jusqu'à :
  • 32 bits × 33 1/3 × 106 bits par seconde soit 1 067 Mbits/s ;
  • octets x 33 1/3 x 106 octets par seconde soit 133 Mo/s.
Ce calcul vaut pour les bus parallèles. Les bus série doivent transmettre, en plus de la donnée, des signaux qui indiquent le début d'une séquence, et le plus souvent des informations d'adresse et de contrôle. S'ils sont asynchrones, il faut ajouter encore des informations de synchronisation. Ils peuvent comprendre en outre des informations redondantes, Somme de contrôle ou Contrôle de redondance cyclique, pour permettre la détection d'erreur. On les caractérise uniquement par le débit binaire.

Bus internes

Vue des composants de contrôle de bus dans un ordinateur : Northbridge et Southbridge
Schéma de la relation entre le processeur et les bus
Articles détaillés : Pont Nord, Pont Sud et HyperTransport.
Les bus internes, également connus sous le nom de bus de données, bus mémoire, système de bus ou de front-side-bus, relient les composants internes principaux d'un ordinateur, tels que le processeur et la mémoire, sur la carte mère. Le bus de données interne est également considéré comme un bus local, parce qu'il est destiné à se connecter à des périphériques locaux. Ce bus est généralement assez rapide et est indépendant du reste des opérations informatiques.
Habituellement les bus internes en lien avec l’extérieur d'un microprocesseur d'ordinateur personnel sont au nombre de deux21 :
Le northbridge 
qui le relie aux périphériques rapides tels que la mémoire, et les cartes graphiques PCIi ;
Le southbridge 
qui le relie à tous les périphériques internes plus lents et le bus PCI ;
Le bus PCI 
utilisé pour effectuer la connexion entre le southbridge et tous les périphériques externes (disques durs, imprimante, etc.). Depuis 2004, le bus PCI Express est utilisé pour les périphériques rapides (cartes graphiques et parfois SSD) et connecté au « north bridge » alors que le bus PCI est maintenant connecté au « south bridge » ;
le bus InfiniBand 
bus haute-vitesse utilisable aussi bien en interne qu'en externe.

Bus externe

Les bus externes, également connu sous le nom de « bus d'expansion », sont constitué des dispositifs électroniques qui relient l'ordinateur (la carte mère) à différents dispositifs externes, tels que l'imprimante, disque dur, scanneretc.. Les différents bus externes sont :

Annexes

Sur les autres projets Wikimedia :

Bibliographie

Articles connexes

  • Architecture (informatique)
  • Bus (électricité)
  • Catégorie Bus informatique
  • Arbre d'horloge
  • Bus logiciel
  • Sortie à trois états
Unite d'interface Bus d'un ordinateur Reviewed by Badr Dev on 15:08 Rating: 5

Aucun commentaire:

All Rights Reserved by Cours Réparation : On vous Explique Comment © 2014 - 2023
Powered By Blogger, Designed by Sweetheme

Formulaire de contact

Nom

E-mail *

Message *

Fourni par Blogger.
Pour Trouvez D'autre Solution ... !!
Cliquer Sur " J'aime " ^_^